ECON 4930 Spring 2011 Electricity Economics Lecture 1

Lecturer:

Finn R. Førsund

Hydro capacity

Figure 2: Hydro under construction, by region, with existing capacity included for reference

Overview of the course

Basic learning objectives

- Know key qualitative results as to optimal social planning in electricity economics when hydropower is involved
- Have a satisfactory understanding of how to formulate dynamic management models using standard non-linear programming
- Understand how constraints on the generating system and uncertainty of inflows of water to hydro reservoirs affect the optimal path of social prices
- Be able to discuss actual market organisations in view of theoretical results obtained from the social planning analyses

Introduction

Why dynamics

- Hydropower plants can store energy in the form of water if there is a dam or reservoir
- Water used today can alternatively be used tomorrow; there is an opportunity cost attached to current water use
- A dynamic analysis is then necessary in order to determine the time profile of the use of water in reservoirs

Introduction, cont.

- Why standard non-linear programming
 - Can use more specialised methods (dynamics programming, Bellman)
 - But will use a more basic tool
- Baumol
 - the Kuhn Tucker conditions may perhaps constitute the most powerful single weapon provided to economics theory by mathematical programming

Overview of the course

Main themes

- Introduction to electricity and hydropower
- The formulation of a dynamic social planning problem
- Understanding price changes over time
- Multiple hydro plants and aggregation
- Introducing thermal generating capacity
- Introducing renewables (wind)
- Trade between countries
- Transmission network
- Market power
- Uncertainty
- Market design

Lecture plan Econ4930 Spring 2011

- 17 January Lecture 1. Introduction to electricity and hydropower
- 24 January Lecture 2.The formulation of a dynamic social planning problem
- 31 January Lecture 3. Understanding price changes over time
- 1 February Seminar 1
- 7 February Lecture 4. Multiple hydro plants and aggregation
- 14 February Lecture 5. Introducing thermal generating capacity
- 15 February Seminar 2
- 28 February Lecture 6. Introducing renewables (wind)

- 7 March Lecture 7. Trade between countries
- 8 March Seminar 3
- 14 March Lecture 8.Transmission network
- 21 March Lecture 9. Market power
- 22 March Seminar 4
- 28 March Lecture 10. Uncertainty
- 4 April Lecture 11. Market design
- 5 April Seminar 5
- 11 April Lecture 12
- 2 May Lecture 13
- 3 May Seminar 6

Electricity

- One of the key goods in a modern economy
- Supply and demand must be in continuous physical equilibrium
- Transmission network links together supply and demand nodes
- Key variables
 - Power (kW)
 - Energy (kWh)
 - Voltage (kV)

The use of electricity in Norwegian households

Load curves for consumption

Load-duration curve

Hydropower

The dynamics of water accumulation:

$$R_{t} \leq R_{t-1} + W_{t} - r_{t}, t = 1,...,T$$

- Reservoir, stock of water R
- Inflows w
- Releases r
- Inequality implies overflow
- Converting water from the dam to electricity $e^{H}_{t} \leq (1/a)r_{t}$
- Fabrication coefficient a assumed to be constant

Storage and production of hydropower in Norway 2003

A social planning problem

 The objective function: Maximising consumer plus producer surplus

$$\sum_{t=1}^{T} \int_{z=0}^{e_t^H} p_t(z) dz$$

- e_t^H : consumption of hydropower in period t
- $p_t(e_t^H)$: demand function on price form, period t
- Discrete time, period from hour, week, month, season, year
- Variable production costs zero

Illustration of the objective function

Area under the demand curve

A social planning problem, cont.

Reservoir dynamics in energy variables

$$R_{t} \leq R_{t-1} + w_{t} - r_{t} = R_{t-1} + w_{t} - ae_{t}^{H} \implies \frac{R_{t}}{a} \leq \frac{R_{t-1}}{a} + \frac{w_{t}}{a} - e_{t}^{H}$$

- Assuming equality in the production function
- All variables expressed in energy units by deflating with the fabrication coefficient

A social planning problem, cont.

$$\max \sum_{t=1}^{T} \int_{z=0}^{e_t^H} p_t(z) dz$$

subject to

$$R_{t} \leq R_{t-1} + w_{t} - e_{t}^{H}$$

$$R_{t} \leq \overline{R}$$

$$R_{t}, e_{t}^{H} \geq 0, t = 1, ..., T$$

$$T, w_t, R_o, \overline{R}$$
 given, R_T free